# Pre-RMO or RMO algebra practice problem: infinite product

Find the product of the following infinite number of terms: $\frac{7}{9} \times \frac{26}{28} \times \frac{63}{65} \times \ldots = \prod_{m=2}^{\infty}\frac{m^{3}-1}{m^{3}+1}$ $m^{3}-1=(m-1)(m^{2}+m+1)$, and also, $m^{3}+1=(m+1)(m^{2}-m+1)=(m-1+2)((m-1)^{2}+(m-1)+1)$

Hence, we get $P_{m}=\frac{7}{9} \times \frac{26}{28} \times \frac{63}{65} \times \ldots \times \frac{m^{3}-1}{m^{3}+1}$, which in turn, equals $(\frac{1}{3} \times \frac{7}{3}) \times (\frac{2}{4} \times \frac{13}{7}) \times (\frac{3}{5} \times \frac{21}{13})\times \ldots (\frac{m-1}{m+1} \times \frac{m^{2}+m+1}{m^{2}-m+1})$, that is, in turn equal to $\frac{2}{3} \times \frac{m^{2}+m+1}{m(m+1)}$, that is, in turn equal to $\frac{}{} \times (1+ \frac{1}{m(m+1)})$, so that when $m \rightarrow \infty$, and then $P_{m} \rightarrow 2/3$.

personal comment: I did not find this solution within my imagination !!! 🙂 🙂 🙂

The credit for the solution goes to “Popular Problems and Puzzles in Mathematics” by Asok Kumar Mallik, IISc Press, Foundation Books. Thanks Prof. Mallik !!

Cheers,

Nalin Pithwa