Concept of order in math and real world

  1. Rise and Shine algorithm: This is crazy-sounding, but quite a perfect example of the need for “order” in the real-world: when we get up in the morning, we first clean our teeth, finish all other ablutions, then go to the bathroom and first we have to remove our pyjamas/pajamas and then the shirt, and then enter the shower; we do not first enter the shower and then remove the pyjamas/shirt !! 🙂
  2. On the number line, as we go from left to right: a<x<b, that is any real number to the left of another real number is always “less than” the number to the right. (note that whereas the real numbers form an “ordered field”, the complex numbers are only “partially ordered”…we will continue this further discussion later) .
  3. Dictionary order
  4. Alphabetical order (the letters A \hspace{0.1in} B \ldots Z in English.
  5. Telephone directory order
  6. So a service like JustDial certainly uses “order” quite intensely: let us say that you want to find the telephone clinic landline number of Dr Mrs Prasad in Jayanagar 4th Block, Bengaluru : We first narrow JustDial to “Location” (Jayanagar 4th Block, Bengaluru), then narrow to “doctors/surgeons” as the case may be, and then check in alphabetic order, the name of Dr Mrs Prasad. So, we clearly see that the “concept” and “actual implementation” of order (in databases) actually speeds up so much the time to find the exact information we want.
  7. So also, in math, we have the concept of ordered pair; in Cartesian geometry, (a,b) means that the first component a \in X-axis and b \in Y-axis. This order is generalized to complex numbers in the complex plane or Argand’s diagram.
  8. There is “order” in human “relations” also: let us (x,y) represents x (as father) and y (as son). Clearly, the father is “first” and the son is “second”.
  9. So, also any “tree” has a “natural order”: seed first, then roots, then branches.

Regards,

Nalin Pithwa.

Why do we need proofs? In other words, difference between a mathematician, physicist and a layman

Yes, I think it is a very nice question, which kids ask me. Why do we need proofs? Well, here is a detailed explanation (I am not mentioning the reference I use here lest it may intimidate my young enthusiastic, hard working students or readers. In other words, the explanation is not my own; I do not claim credit for this…In other words, I am just sharing what I am reading in the book…)

Here it goes:

What exactly is the difference between a mathematician, a physicist, and a layman? Let us suppose that they all start measuring the angles of hundreds of triangles of various shapes, find the sum in each case and keep a record. Suppose the layman finds that with one or two exceptions, the sum in each case comes out to be 180 degrees. He will ignore the exceptions and say “the sum of the three angles in a triangle  is 180 degrees.” A physicist will be more cautious in dealing with the exceptional cases. He will examine them more carefully. If he finds that the sum in them is somewhere between 179 degrees to 180 degrees, say, then he will attribute the deviation to experimental errors. He will then state a law: The sum of three angles of any triangle is 180 degrees. He will then watch happily as the rest of the world puts his law to test and finds that it holds good in thousands of different cases, until somebody comes up with a triangle in which the law fails miserably. The physicist now has to withdraw his law altogether or else to replace it by some other law which holds good in all cases tried. Even this new law may have to be modified at a later date. And, this will continue without end.

A mathematician will be the fussiest of all. If there is even a single exception he will refrain from saying anything. Even when millions of triangles are tried without a single exception, he will not state it as a theorem that the sum of the three angles in ANY triangle is 180 degrees. The reason is that there are infinitely many different types of triangles. To generalize from a million to infinity is as baseless to a mathematician as to generalize from one to a million. He will at the most make a conjecture and say that there is a strong evidence suggesting that the conjecture is true. But that is not the same thing as a proving a theorem. The only proof acceptable to a mathematician is the one which follows from earlier theorems by sheer logical implications (that is, statements of the form : If P, then Q). For example, such a proof follows easily from the theorem that an external angle of a triangle is the sum of the other two internal angles.

The approach taken by the layman or the physicist is known as the inductive approach whereas the mathematician’s approach is called the deductive approach. In the former, we make a few observations and generalize. In the latter, we deduce from something which is already proven. Of course, a question can be raised as to on what basis this supporting theorem is proved. The answer will be some other theorem. But then the same question can be asked about the other theorem. Eventually, a stage is reached where a certain statement cannot be proved from any other earlier proved statement(s) and must, therefore, be taken for granted to be true. Such a statement is known as an axiom or a postulate. Each branch of math has its own axioms or postulates. For examples, one of the axioms of geometry is that through two distinct points, there passes exactly one line. The whole beautiful structure of geometry is based on 5 or 6 axioms such as this one. Every theorem in plane geometry or Euclid’s Geometry can be ultimately deduced from these axioms.

PS: One of the most famous American presidents, Abraham Lincoln had read, understood and solved all of Euclid’s books (The Elements) by burning mid-night oil, night after night, to “sharpen his mental faculties”. And, of course, there is another famous story (true story) of how Albert Einstein as a very young boy got completely “addicted” to math by reading Euclid’s proof of why three medians of a triangle are concurrent…(you can Google up, of course).

Regards,

Nalin Pithwa

 

 

You and your research or you and your studies for competitive math exams

You and your research ( You and your studies) : By Richard Hamming, AT and T, Bell Labs mathematician;

Number theory : A set of friendly examples

Even and odd numbers

Two whole numbers are added together. If their sum is odd, which statements below are
always true? Which are always false? Which are sometimes true and sometimes false?
1 Their quotient is not a whole number.
2 Their product is even.
3 Their difference is even.
4 Their product is more than their sum.
5 If 1 is added to one of the numbers and the product is found, it will be even.
The Collatz conjecture
Choose any whole number to start with.

If it is odd, multiply it by 3 and then add 1.
If it is even, divide it by 2. Then repeat this process on the number just obtained. Keep repeating the procedure.

For example, if you start with 58, the resulting chain of numbers is
58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, …

The Collatz conjecture, made by Lothar Collatz in 1937, claims that, if you repeat this
process over and over, starting with any whole number greater than zero, eventually you will finish up with the sequence … 4, 2, 1, 4, 2, 1.

A conjecture is a statement that is thought to be true but has not been proved mathematically to be true for all cases. Although the Collatz conjecture has been shown to work − often very quickly − for many whole numbers, there are some quite small numbers that take a very long time to come down to … 4, 2, 1, 4, 2, 1.Apply this process to all the whole numbers greater than zero and less than or equal to 30.
For each one, find:
• how many steps it takes to reach 1 the frst time
• the largest number in the sequence. (For the sequence above, 58 takes 19 steps and reaches a maximum of 88.)
Look for shortcuts and work with a partner if you like.

Long division
Here is a way to check how good your long division skills are. If you are able to follow it
through and get to the end without making a mistake, you can consider yourself a qualiꏨed long division champion.
• Start with any two-digit number (for example, 58). Write it three times so that a six-digit  number is formed (585 858).

  • Divide this number by 21. There should not be any remainder. If there is, try and find out where you made your mistake and fix it.
    • Now divide this new four- or possibly five-digit number by 37. Once again, there should be no remainder.
    • Finally, divide this number − which should by now have only three or four digits − by 13.
    You will know if you got it right by looking at the number you are left with.
    Explain why this exercise works.
    (Doing any of this exercise on a calculator is still interesting but is de뀠nitely wimping out!)

Totient numbers

1 A totient number is the number of fractions between 0 and 1 (not including 0 or 1) for
a given denominator that cannot be reduced to a simpler equivalent fraction. The totient
number of 2 is 1, since we have \frac{1}{2}; of 3 it is 2, since we have \frac{1}{3} and \frac{2}{3}; and of 4 it is also 2, since we have \frac{1}{4}
and \frac{3}{4} (\frac{2}{4} can be reduced to \frac{1}{2}). The totient number of 5 is 4, since we have \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}; and of 6 it is 2, since we have \frac{1}{5} and
\frac{5}{6}. Find the totient numbers forall denominators up to 12.

2 For any denominator n, there are n fractions between 0 and 1 (including 0 but not 1). Of
these fractions, some will be counted towards the totient number of n, but others will
cancel down and count towards the totient number of one of the factors of n. Using this
information and the totient numbers from the previous question, calculate the totient
numbers for 15, 18, 20 and 24.

3 The totient number is related to the prime factors of the original number, since these will
determine which fractions can be cancelled. Using this information, calculate the totient numbers of 72, 81, 98 and 100.

\bf{Last \hspace{0.1in}Digits \hspace{0.1in} of \hspace{0.1in}powers}
\bf{Square \hspace{0.1in}Numbers}

Without using a calculator, can you say which of this set of numbers could not be square numbers?

8116801, 251301659, 3186842, 20720704.

You can just by checking the last digit (units digit) of each number.

Do a bit of experimentation with a calculator and find the four digits that square numbers end in. (This eliminates the third number in this set).

Now check out the pairs of digits that your odd square numbers end with. What digits are possible in the tens position of an odd square number? (This number eliminates the second number in the set).

Complete these sentences with what you have discovered:

* In a square number, the last digit (units digit) can only be _____, _______, _______, _______, _______ or _______.
* The second last digit (tens place) of an odd square number is always _______.

\bf{Cube \hspace {0.1in} Numbers}

Cube numbers behave rather differently.

A bit of experimentation will show that cube numbers can end in ANY digit (units place). This digit depends on the last digit (units place) of the original number being cubed.

Complete this table:
\left| \begin{array}{cc}     \mbox {if a number ends in} & \mbox{its cube will end in}\\ 0 & \\ 1 & \\ 2 & \\ 3 & \\ 4 & \\ 5 & \\ 6 & \\ 7 & \\ 8 & \\ 9 & \end{array}\right|

\bf{Fourth \hspace{0.1in}Powers}

Fourth powers are in fact just square numbers that have been squared. For example, 7^{4}=7^{2} \times 7^{2}= 49^{2}=2401.

Since 4^{2}=16 and 9^{2}=81, the last digit of a fourth power can only be 0, 1, 5 or 6.

\bf{Fifth \hspace{0.1in}powers}

Fifth powers have a magic of their own. Do a bit of experimentation to find out what it is. In p, particular, I suggest you create tables of second powers, third powers, fourth powers and fifth powers of all numbers from zero to 20. Check, compare…actually, it is fun to “compare rate of growth of powers with increasing integers”…this idea involves rudimentary ideas of calculus…

\bf{Obstinate \hspace{0.1in} numbers}

An odd number can usually be written as a sum of a prime number and another number, which is a power of two. This is true for all odd numbers greater than one but less than 100.

For example, if we choose 23, we can say that it is equal to 23=19 + 2^{2}. There is one more way to represent 23: it is 7 + 2^{4}. So, there are two ways to represent 23 as a sum of a prime number and a power of two. But, 21+2^{1} and 15+2^{3} do not work as both 21 and 15 are not prime numbers.

Some odd numbers like this can be expressed in many ways.

Try to find various representations as sum(s) of prime number and a power(s) of two of the following integers: 45, 29, 59, 95.

If you are adventurous or courageous, try to find such representations of all odd numbers lying from 1 to 100. You need a lot of patience and stamina and grit…but you will develop an “intuitive feel or tactile feel for numbers”…that’s the way math begins…

There are some odd numbers which cannot be expressed as a sum of a prime number and a power of two. Such numbers are called \bf{obstinate \hspace{0.1in} numbers}.

An example of an obstinate number is \bf{251} as the working below shows:

251-2^{1}=249=3 \times 83

251-2^{2}=247=13 \times 19

251-2^{3}=243=3 \times 81

251-2^{4}=235= 5 \times 47

251-2^{5}=219= 3 \times 73

251-2^{6}= 187= 11 \times 17

251-2^{7}=123=3 \times 41

The next power of 2 is 2^{8}=256, which is clearly greater than 251. Hence, 251 is an obstinate number.

In fact, 251 is the third obstinate number. The first two lie between 100 and 150. Find these two odd numbers keeping track of how you eliminated the other twenty three odd numbers between 100 and 150.

\it{Remember \hspace{0.1in} to \hspace{0.1in} be \hspace{0.1in} systematic \hspace{0.1in}}.

Making a list of the powers of two up to 2^{8} might be a good place to start with. Look for short cuts and patterns as you proceed further.

Have fun with numbers !!

Regards,
Nalin Pithwa.

Axiomatic Method : A little explanation

I) Take an English-into-English dictionary (any other language will also do). Start with any word and note down any word occurring in its definition, as given in the dictionary. Take this new word and note down any word appearing in it until a vicious circle results. Prove that a vicious circle is unavoidable no matter which word one starts with , (Caution: the vicious circle may not always involve the original word).

For example, in geometry the word “point” is undefined. For example, in set theory, when we write or say : a \in A ; the element “a” ‘belongs to’ “set A” —- the word “belong to” is not defined.

So, in all branches of math or physics especially, there are such “atomic” or “undefined” terms that one starts with.

After such terms come the “axioms” — statements which are assumed to be true; that is, statements whose proof is not sought.

The following are the axioms based on which equations are solved in algebra:

  1. If to equals we add equals, we get equals.
  2. If from equals we take equals, the remainders are equal.
  3. If equals are multiplied by equals, the products are equal.
  4. If equals are divided by equals (not zero), the quotients are equal.

More later,

Nalin Pithwa.

Check your mathematical induction concepts

Discuss the following “proof” of the (false) theorem:

If n is any positive integer and S is a set containing exactly n real numbers, then all the numbers in S are equal:

PROOF BY INDUCTION:

Step 1:

If n=1, the result is evident.

Step 2: By the induction hypothesis the result is true when n=k; we must prove that it is correct when n=k+1. Let S be any set containing exactly k+1 real numbers and denote these real numbers by a_{1}, a_{2}, a_{3}, \ldots, a_{k}, a_{k+1}. If we omit a_{k+1} from this list, we obtain exactly k numbers a_{1}, a_{2}, \ldots, a_{k}; by induction hypothesis these numbers are all equal:

a_{1}=a_{2}= \ldots = a_{k}.

If we omit a_{1} from the list of numbers in S, we again obtain exactly k numbers a_{2}, \ldots, a_{k}, a_{k+1}; by the induction hypothesis these numbers are all equal:

a_{2}=a_{3}=\ldots = a_{k}=a_{k+1}.

It follows easily that all k+1 numbers in S are equal.

*************************************************************************************

Comments, observations are welcome 🙂

Regards,

Nalin Pithwa