Pick’s theorem: a geometry problem for RMO practice

Pick’s theorem:

Consider a square lattice of unit side. A simple polygon (with non-intersecting sides) of any shape is drawn with its vertices at the lattice points. The area of the polygon can be simply obtained as B/2+I-1 square units, where B is the number of lattice points on the boundary; I = number of lattice points in the interior region of the polygon. Prove this theorem.


Refer Wikipedia 🙂 🙂 🙂



Nalin Pithwa.