Tutorial on Basic Set Theory and Functions: for PRMO, RMO and IITJEE Mains maths

I) Prove that every function can be represented as a sum of an even function and an odd function.

II)Let A, B, C be subsets of a set S. Prove the following statements and illustrate them with Venn Diagrams:

2a) The famous DeMorgan’s laws in their basic forms: A^{'} \bigcup B^{'} = (A \bigcap B)^{'} and A^{'} \bigcap B^{'} = (A \bigcup B)^{'}. Assume that both sets A and B are subsets of Set S. In words, the first is: union of complements is the complement of intersection; the second is: intersection of two complements is the complement of the union of the two sets.

Sample Solution:

Let us say that we need to prove: A^{'}\bigcap B^{'}=(A \bigcup B)^{'}.

Proof: It must be shown that the two sets have the same elements; in other words, that each element of the set on LHS is an element of the set on RHS and vice-versa.

If x \in A^{'} \bigcap B^{'}, then x \in A^{'} and x \in B^{'}. This means that x \in S, and x \notin A and x \notin B. Since x \notin A and x \notin B, hence x \notin A \bigcup B. Hence, x \in (A \bigcup B)^{'}.

Conversely, if x \in (A \bigcup B)^{'}, then x \in S  and x \notin A \bigcup B. Therefore, x \notin A and x \notin B. Thus, x \in A^{'} and x \in Y^{'}, so that x \in A^{'} \bigcap B^{'}. QED.

2b) A \bigcap (B \bigcup C) = (A \bigcap B)\bigcup (A \bigcap C).

2c) A \bigcup (B \bigcap C) = (A \bigcup B) \bigcap (A \bigcup C)

III) Prove that if I and S are sets and if for each i \in I, we have X_{i} \subset S, then (\bigcap_{i \in I} X_{i})^{'} = \bigcup_{i \in I}(X_{i})^{'}.

Sample Solution: 

It must be shown that each element of the set on the LHS is an element of the set on RHS, and vice-versa.

If x \in (\bigcap_{i \in I} X_{i})^{'}, then x \in S and x \notin \bigcap_{i \in I} X_{i}. Therefore, x \notin X_{i}, for at least one j \in I. Thus, x \in (X_{i})^{'}, so that x \in \bigcup_{i \in I}(X_{i})^{'}.

Conversely, if x \in \bigcup_{i \in I}(X_{i})^{i}, then for some j \in I, we have x \in (X_{i})^{'}. Thus, x \in S and x \notin X_{i}. Since x \notin X_{i}, we have x \notin \bigcap_{i \in I}X_{i}. Therefore, x \in \bigcap_{i \in I}(X_{i})^{'}. QED.

IV) If A, B and C are sets, show that :

4i) (A-B)\bigcap C = (A \bigcap C)-B

4ii) (A \bigcup B) - (A \bigcap B)=(A-B) \bigcup (B-A)

4iii) A-(B-C)=(A-B)\bigcup (A \bigcap B \bigcap C)

4iv) (A-B) \times C = (A \times C) - (B \times C)

V) Let I be a nonempty set and for each i \in I let X_{i} be a set. Prove that

5a) for any set B, we have : B \bigcap \bigcup_{i \in I} X_{i} = \bigcup_{i \in I}(B \bigcap X_{i})

5b) if each X_{i} is a subset of a given set S, then (\bigcup_{i \in I}X_{i})^{'}=\bigcap_{i \in I}(X_{i})^{'}

VI) Prove that if f: X \rightarrow Y, g: Y \rightarrow Z, and Z \rightarrow W are functions, then : h \circ (g \circ f) = (h \circ g) \circ f

VII) Let f: X \rightarrow Y be a function, let A and B be subsets of X, and let C and D be subsets of Y. Prove that:

7i) f(A \bigcup B) = f(A) \bigcup f(B); in words, image of union of two sets is the union of two images;

7ii) f(A \bigcap B) \subset f(A) \bigcap f(B); in words, image of intersection of two sets is a subset of the intersection of the two images;

7iii) f^{-1}(C \bigcup D) = f^{-1}(C) \bigcup f^{-1}(D); in words, the inverse image of the union of two sets is the union of the images of the two sets.

7iv) f^{-1}(C \bigcap D)=f^{-1}(C) \bigcap f^{-1}(D); in words, the inverse image of intersection of two sets is intersection of the two inverse images.

7v) f^{-1}(f(A)) \supset A; in words, the inverse of the image of a set contains the set itself.

7vi) f(f^{-1}(C)) \subset C; in words, the image of an inverse image of a set is a subset of that set.

For questions 8 and 9, we can assume that the function f is f: X \rightarrow Y and a set A lies in domain X and a set C lies in co-domain Y.

8) Prove that a function f is 1-1 if and only if f^{-1}(f(A))=A for all A \subset X; in words, a function sends different inputs to different outputs iff a set in its domain is the same as the inverse of the image of that set itself.

9) Prove that a function f is onto if and only if f(f^{-1}(C))=C for all C \subset Y; in words, the image of a domain is equal to whole co-domain (which is same as range) iff a set in its domain is the same as the image of the inverse image of that set.

Cheers,

Nalin Pithwa

Prof. Tim Gowers’ on recognising countable sets

https://gowers.wordpress.com/2008/07/30/recognising-countable-sets/

Thanks Dr. Gowers’. These are invaluable insights into basics. Thanks for giving so much of your time.

Huygens’ problem to Leibnitz: solution

In the Feb 23 2018 blog problem, we posed the following question:

Sum the following infinite series:

1+\frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \frac{1}{15}+ \ldots.

Solution:

The sum can be written as:

S=\sum_{n=1}^{\infty}P_{n}, where P_{n}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1}).

Thus, 2(1-\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \ldots)=2. This is the answer.

If you think deeper, this needs some discussion about rearrangements of infinite series also. For the time, we consider it outside our scope.

Cheers,

Nalin Pithwa.

RMO Training: taking help from Nordic mathematical contest: 1988

Problem:

Let m_{n} be a smallest value of the function f_{n}(x)=\sum_{k=0}^{2n}x^{k}. Prove that m_{n} \rightarrow \frac{1}{2} when n \rightarrow \infty.

Proof:

For n>1,

f_{n}(x)=1+x+x^{2}+\ldots=1+x(1+x+x^{2}+x^{4}+\ldots)+x^{2}(1+x^{2}+x^{4}+\ldots)=1+x(1+x)\sum_{k=0}^{n-1}x^{2k}.

From this, we see that f_{n}(x)\geq 1 for x \leq -1 and x\geq 0. Consequently, f_{n} attains its maximum value in the interval (-1,0). On this interval

f_{n}(x)=\frac{1-x^{2n+1}}{1-x}>\frac{1}{1-x}>\frac{1}{2}

So, m_{n} \geq \frac{1}{2}. But,

m_{n} \leq f_{n}(-1+\frac{1}{\sqrt{n}})=\frac{1}{2-\frac{1}{\sqrt{n}}}+\frac{(1-\frac{1}{\sqrt{n}})^{2n+1}}{2-\frac{1}{\sqrt{n}}}

As n \rightarrow \infty, the first term on the right hand side tends to the limit \frac{1}{2}. In the second term, the factor

(1-\frac{1}{\sqrt{n}})^{2n}=((1-\frac{1}{\sqrt{n}})^{\sqrt{n}})^{2\sqrt{n}}

of the numerator tends to zero because

\lim_{k \rightarrow \infty}(1-\frac{1}{k})^{k}=e^{-1}<1.

So, \lim_{n \rightarrow \infty}m_{n}=\frac{1}{2}

auf wiedersehen,

Nalin Pithwa.

Reference: Nordic Mathematical Contest, 1987-2009.