Huygens’ problem to Leibnitz: solution

In the Feb 23 2018 blog problem, we posed the following question:

Sum the following infinite series: $1+\frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \frac{1}{15}+ \ldots$.

Solution:

The sum can be written as: $S=\sum_{n=1}^{\infty}P_{n}$, where $P_{n}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$.

Thus, $2(1-\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \ldots)=2$. This is the answer.

If you think deeper, this needs some discussion about rearrangements of infinite series also. For the time, we consider it outside our scope.

Cheers,

Nalin Pithwa.

RMO Training: taking help from Nordic mathematical contest: 1988

Problem:

Let $m_{n}$ be a smallest value of the function $f_{n}(x)=\sum_{k=0}^{2n}x^{k}$. Prove that $m_{n} \rightarrow \frac{1}{2}$ when $n \rightarrow \infty$.

Proof:

For $n>1$, $f_{n}(x)=1+x+x^{2}+\ldots=1+x(1+x+x^{2}+x^{4}+\ldots)+x^{2}(1+x^{2}+x^{4}+\ldots)=1+x(1+x)\sum_{k=0}^{n-1}x^{2k}$.

From this, we see that $f_{n}(x)\geq 1$ for $x \leq -1$ and $x\geq 0$. Consequently, $f_{n}$ attains its maximum value in the interval $(-1,0)$. On this interval $f_{n}(x)=\frac{1-x^{2n+1}}{1-x}>\frac{1}{1-x}>\frac{1}{2}$

So, $m_{n} \geq \frac{1}{2}$. But, $m_{n} \leq f_{n}(-1+\frac{1}{\sqrt{n}})=\frac{1}{2-\frac{1}{\sqrt{n}}}+\frac{(1-\frac{1}{\sqrt{n}})^{2n+1}}{2-\frac{1}{\sqrt{n}}}$

As $n \rightarrow \infty$, the first term on the right hand side tends to the limit $\frac{1}{2}$. In the second term, the factor $(1-\frac{1}{\sqrt{n}})^{2n}=((1-\frac{1}{\sqrt{n}})^{\sqrt{n}})^{2\sqrt{n}}$

of the numerator tends to zero because $\lim_{k \rightarrow \infty}(1-\frac{1}{k})^{k}=e^{-1}<1$.

So, $\lim_{n \rightarrow \infty}m_{n}=\frac{1}{2}$

auf wiedersehen,

Nalin Pithwa.

Reference: Nordic Mathematical Contest, 1987-2009.

Functions — “s’wat” Math is about !! :-)

Reference: Nordic Mathematical Contest 1987, R. Todev:

Question:

Let f be a function, defined for natural numbers, that is strictly increasing, such that values of the function are also natural numbers and which satisfies the conditions $f(2)=a>2$ and $f(mn)=f(m)f(n)$ for all natural numbers m and n. Define the smallest possible value of a.

Solution:

Since, $f(n)=n^{2}$ is a function satisfying the conditions of the problem, the smallest possible a is at most 4. Assume that $a=3$. It is easy to prove by induction that $f(n^{k})={f(n)}^{k}$ for all $k \geq 1$. So, taking into account that f is strictly increasing, we get ${f(3)}^{4}=f(3^{4})=f(81)>f(64)=f(2^{6})={f(2)}^{6}=3^{6}=27^{2}>25^{2}=5^{4}$

as well as ${f(3)}^{8}=f(3^{8})=f(6561).

So, we arrive at $5. But, this is not possible, since $f(3)$ is an integer. So, $a=4$.

Cheers,

Nalin Pithwa.