# Pre RMO practice sheet

Question 1:

What is the smallest positive integer k such that $k(3^{3}+4^{3}+5^{3})=a^{n}$ for some positive integers a and n with $n>1$?

Solution 1:

We have $k \times 216= a^{n}$ so that $k \times 6^{3} = a^{n}$ giving k=1.

Question 2:

Let $S_{n} = \sum_{k=0}^{n}\frac{1}{\sqrt{k+1}+\sqrt{k}}$.

What is the value of $\sum_{n=1}^{99} \frac{1}{S_{n}+S_{n-1}}$

Answer 2:

Given

$S_{n} = \sum_{k=0}^{n} \frac{1}{\sqrt{k+1}+\sqrt{k}} \times \frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k+1}-\sqrt{k}}$

$S_{n} = \sum_{k=0}^{n} (\sqrt{k+1}-\sqrt{k}) = \sqrt{n+1}$

Similarly,

$S_{n-1} = \sum_{k=0}^{n-1}(\sqrt{k+1}-\sqrt{k}) = \sqrt{n}$

Now, $\sum_{n=1}^{99} \frac{1}{S_{n}+S_{n-1}} = \sum_{n=1}^{99}\frac{1}{\sqrt{n+1}-\sqrt{n}} \times \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}-\sqrt{n}}$

which in turn is equal to $\sum_{n=1}^{99} (\sqrt{n+1}-\sqrt{n}) = (\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+ (\sqrt{4}-\sqrt{3}+ \ldots + (\sqrt{100}-\sqrt{99})) = \sqrt{100} -\sqrt{1}=10-1=9$

Question 3: Homework:

It is given that the equation $x^{2}+ax+20=0$ has integer roots. What is the sum of all possible values of a?

Cheers,

Nalin Pithwa

This site uses Akismet to reduce spam. Learn how your comment data is processed.