Ratio and proportion tutorial problems: pre RMO or PRMO or IITJEE foundation maths

Example 1:

If (2ma+6mb+3nc+9nd)(2ma-6mb-3nc+9nd)=(2ma-6mb+3nc-9nd)(2ma+6mb-3nc-9nd), prove that a, b, c, and d are proportionals.

Solution 1:

Given that

\frac{2ma+6mb+3nc+9nd}{2ma-6mb+3nc-9nd} = \frac{2mn+6mb-3nc-9nd}{2ma-6mb-3nc+9nd}

We also know that if \frac{x}{y} = \frac{p}{q}, then the property of componendo and dividendo says: \frac{x+y}{x-y} = \frac{p+q}{p-q}. Applying this property to the above “huge” fraction, we get:

\frac{2(2ma+3nc)}{2(6mb+9nd)} = \frac{2(2ma-3nc)}{2(6mb-9nd)}

We know that if \frac{x}{y} = \frac{p}{q}, then \frac{x}{p} = \frac{y}{q}, which is the property called alternendo. Applying this property to the above fraction, we get

\frac{2ma+3nc}{2ma-3nc} = \frac{6mb+9nd}{6mb-9nd},

again, applying componendo and dividendo to the above, we get

\frac{4ma}{6nc} = \frac{12mb}{18nd}

hence, \frac{a}{c} = \frac{b}{d}, that is, a, b, c and d are proportionals. Hence, the proof.

Example 2:

Solve the equation: \frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}} = \frac{4x-1}{2}

Solution 2:

By componendo and dividendo, we get \frac{\sqrt{x+1}}{\sqrt{x-1}} = \frac{4x+1}{4x-3}

Now, squaring both sides of the above equation, we get \frac{x+1}{x-1} = \frac{16x^{2}+8x+1}{16x^{2}-24x+9}.

Again, applying componendo and dividendo,

\frac{2x}{2} = \frac{32x^{2}-16x+10}{32x-8}

x = \frac{16x^{2}-8x+5}{16x-4}

so, we get 16x^{2}-4x=16x^{2}-8x+5

so, we get finally x=\frac{5}{4}

Cheers,

Nalin Pithwa

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.