# Concept of order in math and real world

1. Rise and Shine algorithm: This is crazy-sounding, but quite a perfect example of the need for “order” in the real-world: when we get up in the morning, we first clean our teeth, finish all other ablutions, then go to the bathroom and first we have to remove our pyjamas/pajamas and then the shirt, and then enter the shower; we do not first enter the shower and then remove the pyjamas/shirt !! 🙂
2. On the number line, as we go from left to right: $a, that is any real number to the left of another real number is always “less than” the number to the right. (note that whereas the real numbers form an “ordered field”, the complex numbers are only “partially ordered”…we will continue this further discussion later) .
3. Dictionary order
4. Alphabetical order (the letters $A \hspace{0.1in} B \ldots Z$ in English.
5. Telephone directory order
6. So a service like JustDial certainly uses “order” quite intensely: let us say that you want to find the telephone clinic landline number of Dr Mrs Prasad in Jayanagar 4th Block, Bengaluru : We first narrow JustDial to “Location” (Jayanagar 4th Block, Bengaluru), then narrow to “doctors/surgeons” as the case may be, and then check in alphabetic order, the name of Dr Mrs Prasad. So, we clearly see that the “concept” and “actual implementation” of order (in databases) actually speeds up so much the time to find the exact information we want.
7. So also, in math, we have the concept of ordered pair; in Cartesian geometry, $(a,b)$ means that the first component $a \in X-axis$ and $b \in Y-axis$. This order is generalized to complex numbers in the complex plane or Argand’s diagram.
8. There is “order” in human “relations” also: let us $(x,y)$ represents x (as father) and y (as son). Clearly, the father is “first” and the son is “second”.
9. So, also any “tree” has a “natural order”: seed first, then roots, then branches.

Regards,

Nalin Pithwa.

This site uses Akismet to reduce spam. Learn how your comment data is processed.