# Tutorial on Basic Set Theory and Functions: for PRMO, RMO and IITJEE Mains maths

I) Prove that every function can be represented as a sum of an even function and an odd function.

II)Let A, B, C be subsets of a set S. Prove the following statements and illustrate them with Venn Diagrams:

2a) The famous DeMorgan’s laws in their basic forms: $A^{'} \bigcup B^{'} = (A \bigcap B)^{'}$ and $A^{'} \bigcap B^{'} = (A \bigcup B)^{'}$. Assume that both sets A and B are subsets of Set S. In words, the first is: union of complements is the complement of intersection; the second is: intersection of two complements is the complement of the union of the two sets.

Sample Solution:

Let us say that we need to prove: $A^{'}\bigcap B^{'}=(A \bigcup B)^{'}$.

Proof: It must be shown that the two sets have the same elements; in other words, that each element of the set on LHS is an element of the set on RHS and vice-versa.

If $x \in A^{'} \bigcap B^{'}$, then $x \in A^{'}$ and $x \in B^{'}$. This means that $x \in S$, and $x \notin A$ and $x \notin B$. Since $x \notin A$ and $x \notin B$, hence $x \notin A \bigcup B$. Hence, $x \in (A \bigcup B)^{'}$.

Conversely, if $x \in (A \bigcup B)^{'}$, then $x \in S$  and $x \notin A \bigcup B$. Therefore, $x \notin A$ and $x \notin B$. Thus, $x \in A^{'}$ and $x \in Y^{'}$, so that $x \in A^{'} \bigcap B^{'}$. QED.

2b) $A \bigcap (B \bigcup C) = (A \bigcap B)\bigcup (A \bigcap C)$.

2c) $A \bigcup (B \bigcap C) = (A \bigcup B) \bigcap (A \bigcup C)$

III) Prove that if I and S are sets and if for each $i \in I$, we have $X_{i} \subset S$, then $(\bigcap_{i \in I} X_{i})^{'} = \bigcup_{i \in I}(X_{i})^{'}$.

Sample Solution:

It must be shown that each element of the set on the LHS is an element of the set on RHS, and vice-versa.

If $x \in (\bigcap_{i \in I} X_{i})^{'}$, then $x \in S$ and $x \notin \bigcap_{i \in I} X_{i}$. Therefore, $x \notin X_{i}$, for at least one $j \in I$. Thus, $x \in (X_{i})^{'}$, so that $x \in \bigcup_{i \in I}(X_{i})^{'}$.

Conversely, if $x \in \bigcup_{i \in I}(X_{i})^{i}$, then for some $j \in I$, we have $x \in (X_{i})^{'}$. Thus, $x \in S$ and $x \notin X_{i}$. Since $x \notin X_{i}$, we have $x \notin \bigcap_{i \in I}X_{i}$. Therefore, $x \in \bigcap_{i \in I}(X_{i})^{'}$. QED.

IV) If A, B and C are sets, show that :

4i) $(A-B)\bigcap C = (A \bigcap C)-B$

4ii) $(A \bigcup B) - (A \bigcap B)=(A-B) \bigcup (B-A)$

4iii) $A-(B-C)=(A-B)\bigcup (A \bigcap B \bigcap C)$

4iv) $(A-B) \times C = (A \times C) - (B \times C)$

V) Let I be a nonempty set and for each $i \in I$ let $X_{i}$ be a set. Prove that

5a) for any set B, we have : $B \bigcap \bigcup_{i \in I} X_{i} = \bigcup_{i \in I}(B \bigcap X_{i})$

5b) if each $X_{i}$ is a subset of a given set S, then $(\bigcup_{i \in I}X_{i})^{'}=\bigcap_{i \in I}(X_{i})^{'}$

VI) Prove that if $f: X \rightarrow Y$, $g: Y \rightarrow Z$, and $Z \rightarrow W$ are functions, then : $h \circ (g \circ f) = (h \circ g) \circ f$

VII) Let $f: X \rightarrow Y$ be a function, let A and B be subsets of X, and let C and D be subsets of Y. Prove that:

7i) $f(A \bigcup B) = f(A) \bigcup f(B)$; in words, image of union of two sets is the union of two images;

7ii) $f(A \bigcap B) \subset f(A) \bigcap f(B)$; in words, image of intersection of two sets is a subset of the intersection of the two images;

7iii) $f^{-1}(C \bigcup D) = f^{-1}(C) \bigcup f^{-1}(D)$; in words, the inverse image of the union of two sets is the union of the images of the two sets.

7iv) $f^{-1}(C \bigcap D)=f^{-1}(C) \bigcap f^{-1}(D)$; in words, the inverse image of intersection of two sets is intersection of the two inverse images.

7v) $f^{-1}(f(A)) \supset A$; in words, the inverse of the image of a set contains the set itself.

7vi) $f(f^{-1}(C)) \subset C$; in words, the image of an inverse image of a set is a subset of that set.

For questions 8 and 9, we can assume that the function f is $f: X \rightarrow Y$ and a set A lies in domain X and a set C lies in co-domain Y.

8) Prove that a function f is 1-1 if and only if $f^{-1}(f(A))=A$ for all $A \subset X$; in words, a function sends different inputs to different outputs iff a set in its domain is the same as the inverse of the image of that set itself.

9) Prove that a function f is onto if and only if $f(f^{-1}(C))=C$ for all $C \subset Y$; in words, the image of a domain is equal to whole co-domain (which is same as range) iff a set in its domain is the same as the image of the inverse image of that set.

Cheers,

Nalin Pithwa

This site uses Akismet to reduce spam. Learn how your comment data is processed.