# Eight digit bank identification number and other problems of elementary number theory

Question 1:

Consider the eight-digit bank identification number $a_{1}a_{2}\ldots a_{8}$, which is followed by a ninth check digit $a_{9}$ chosen to satisfy the congruence

$a_{9} \equiv 7a_{1} + 3a_{2} + 9a_{3} + 7a_{4} + 3a_{5} + 9a_{6} + 7a_{7} + 3a_{8} {\pmod {10}}$

(a) Obtain the check digits that should be appended to the two numbers 55382006 and 81372439.

(b) The bank identification number $237a_{4}18538$ has an illegitimate fourth digit. Determine the value of the obscured digit.

Question 2:

(a) Find an integer having the remainders 1,2,5,5 when divided by 2, 3, 6, 12 respectively (Yih-hing, died 717)

(b) Find an integer having the remainders 2,3,4,5 when divided by 3,4,5,6 respectively (Bhaskara, born 1114)

(c) Find an integer having remainders 3,11,15 when divided by 10, 13, 17, respectively (Regiomontanus, 1436-1476)

Question 3:

Question 3:

Let $t_{n}$ denote the nth triangular number. For which values of n does $t_{n}$ divide $t_{1}^{2} + t_{2}^{2} + \ldots + t_{n}^{2}$

Hint: Because $t_{1}^{2}+t_{2}^{2}+ \ldots + t_{n}^{2} = t_{n}(3n^{3}+12n^{2}+13n+2)/30$, it suffices to determine those n satisfying $3n^{3}+12n^{2}+13n+2 \equiv 0 {\pmod {2.3.5}}$

Question 4:

Find the solutions of the system of congruences:

$3x + 4y \equiv 5 {\pmod {13}}$
$2x + 5y \equiv 7 {\pmod {13}}$

Question 5:

Obtain the two incongruent solutions modulo 210 of the system

$2x \equiv 3 {\pmod 5}$
$4x \equiv 2 {\pmod 6}$
$3x \equiv 2 {\pmod 7}$

Question 6:

Use Fermat’s Little Theorem to verify that 17 divides $11^{104}+1$

Question 7:

(a) If $gcd(a,35)=1$, show that $a^{12} \equiv {\pmod {35}}$. Hint: From Fermat’s Little Theorem, $a^{6} \equiv 1 {\pmod 7}$ and $a^{4} \equiv 1 {\pmod 5}$

(b) If $gcd(a,42) =1$, show that $168=3.7.8$ divides $a^{6}-1$
(c) If $gcd(a,133)=gcd(b,133)=1$, show that $133| a^{18} - b^{18}$

Question 8:

Show that $561|2^{561}-1$ and $561|3^{561}-3$. Do there exist infinitely many composite numbers n with the property that $n|2^{n}-2$ and $n|3^{n}-3$?

Question 9:

Prove that any integer of the form $n = (6k+1)(12k+1)(18k+1)$ is an absolute pseudoprime if all three factors are prime; hence, $1729=7.13.19$ is an absolute pseudoprime.

Question 10:

Prove that the quadratic congruence $x^{2}+1 \equiv 0 {\pmod p}$, where p is an odd prime, has a solution if and only if $p \equiv {pmod 4}$.

Note: By quadratic congruence is meant a congruence of the form $ax^{2}+bx+c \equiv 0 {\pmod n}$ with $a \equiv 0 {\pmod n}$. This is the content of the above proof.

More later,
Nalin Pithwa.

This site uses Akismet to reduce spam. Learn how your comment data is processed.