Eight digit bank identification number and other problems of elementary number theory

Question 1:

Consider the eight-digit bank identification number a_{1}a_{2}\ldots a_{8}, which is followed by a ninth check digit a_{9} chosen to satisfy the congruence

a_{9} \equiv 7a_{1} + 3a_{2} + 9a_{3} + 7a_{4} + 3a_{5} + 9a_{6} + 7a_{7} + 3a_{8} {\pmod {10}}

(a) Obtain the check digits that should be appended to the two numbers 55382006 and 81372439.

(b) The bank identification number 237a_{4}18538 has an illegitimate fourth digit. Determine the value of the obscured digit.

Question 2:

(a) Find an integer having the remainders 1,2,5,5 when divided by 2, 3, 6, 12 respectively (Yih-hing, died 717)

(b) Find an integer having the remainders 2,3,4,5 when divided by 3,4,5,6 respectively (Bhaskara, born 1114)

(c) Find an integer having remainders 3,11,15 when divided by 10, 13, 17, respectively (Regiomontanus, 1436-1476)

Question 3:

Question 3:

Let t_{n} denote the nth triangular number. For which values of n does t_{n} divide t_{1}^{2} + t_{2}^{2} + \ldots + t_{n}^{2}

Hint: Because t_{1}^{2}+t_{2}^{2}+ \ldots + t_{n}^{2} = t_{n}(3n^{3}+12n^{2}+13n+2)/30, it suffices to determine those n satisfying 3n^{3}+12n^{2}+13n+2 \equiv 0 {\pmod {2.3.5}}

Question 4:

Find the solutions of the system of congruences:

3x + 4y \equiv 5 {\pmod {13}}
2x + 5y \equiv 7 {\pmod {13}}

Question 5:

Obtain the two incongruent solutions modulo 210 of the system

2x \equiv 3 {\pmod 5}
4x \equiv 2 {\pmod 6}
3x \equiv 2 {\pmod 7}

Question 6:

Use Fermat’s Little Theorem to verify that 17 divides 11^{104}+1

Question 7:

(a) If gcd(a,35)=1, show that a^{12} \equiv {\pmod {35}}. Hint: From Fermat’s Little Theorem, a^{6} \equiv 1 {\pmod 7} and a^{4} \equiv 1 {\pmod 5}

(b) If gcd(a,42) =1, show that 168=3.7.8 divides a^{6}-1
(c) If gcd(a,133)=gcd(b,133)=1, show that 133| a^{18} - b^{18}

Question 8:

Show that 561|2^{561}-1 and 561|3^{561}-3. Do there exist infinitely many composite numbers n with the property that n|2^{n}-2 and n|3^{n}-3?

Question 9:

Prove that any integer of the form n = (6k+1)(12k+1)(18k+1) is an absolute pseudoprime if all three factors are prime; hence, 1729=7.13.19 is an absolute pseudoprime.

Question 10:

Prove that the quadratic congruence x^{2}+1 \equiv 0 {\pmod p}, where p is an odd prime, has a solution if and only if p \equiv {pmod 4}.

Note: By quadratic congruence is meant a congruence of the form ax^{2}+bx+c \equiv 0 {\pmod n} with a \equiv 0 {\pmod n}. This is the content of the above proof.

More later,
Nalin Pithwa.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.