# Pre-RMO or RMO algebra practice problem: infinite product

Find the product of the following infinite number of terms: $\frac{7}{9} \times \frac{26}{28} \times \frac{63}{65} \times \ldots = \prod_{m=2}^{\infty}\frac{m^{3}-1}{m^{3}+1}$ $m^{3}-1=(m-1)(m^{2}+m+1)$, and also, $m^{3}+1=(m+1)(m^{2}-m+1)=(m-1+2)((m-1)^{2}+(m-1)+1)$

Hence, we get $P_{m}=\frac{7}{9} \times \frac{26}{28} \times \frac{63}{65} \times \ldots \times \frac{m^{3}-1}{m^{3}+1}$, which in turn, equals $(\frac{1}{3} \times \frac{7}{3}) \times (\frac{2}{4} \times \frac{13}{7}) \times (\frac{3}{5} \times \frac{21}{13})\times \ldots (\frac{m-1}{m+1} \times \frac{m^{2}+m+1}{m^{2}-m+1})$, that is, in turn equal to $\frac{2}{3} \times \frac{m^{2}+m+1}{m(m+1)}$, that is, in turn equal to $\frac{}{} \times (1+ \frac{1}{m(m+1)})$, so that when $m \rightarrow \infty$, and then $P_{m} \rightarrow 2/3$.

personal comment: I did not find this solution within my imagination !!! 🙂 🙂 🙂

The credit for the solution goes to “Popular Problems and Puzzles in Mathematics” by Asok Kumar Mallik, IISc Press, Foundation Books. Thanks Prof. Mallik !!

Cheers,

Nalin Pithwa

This site uses Akismet to reduce spam. Learn how your comment data is processed.