Solutions to two algebra problems for RMO practice

Problem 1.

If a, b, c are non-negative real numbers such that (1+a)(1+b)(1+c)=8, then prove that the product abc cannot exceed 1.

Solution I:

Given that a \geq 0, b \geq 0, c \geq 0, so certainly abc>0, ab>0, bc>0, and ac>0.

Now, (1+a)(1+b) = 1 + a + b + ab and hence, (1+a)(1+b)(1+c) = (1+a+b+ab)(1+c)= 1+a+b+ab+c +ac + bc + abc=8, hence we get:

a+b+c+ab+bc+ca+abc=7.ย Clearly, the presence ofย a+b+c and abc reminds us of the AM-GM inequality.

Here it is AM \geq GM.

So, \frac{a+b+c}{3} \geq (abc)^{1/3}.

Also, we can say: \frac{ab+bc+ca}{3} \geq (^{1/3}. Now, let x=(abc)^{1/3}.

So, 8 \geq 1+3x+3x^{2}+x^{3}

that is, 8 \geq (1+x)^{3}, or 2 \geq 1+x, that is, x \leq 1.ย So, this is a beautiful application of arithmetic mean-geometric mean inequality twice. ๐Ÿ™‚ ๐Ÿ™‚

Problem 2:

If a, b, c are three rational numbers, then prove that :\frac{1}{(a-b)^{2}} + \frac{1}{(b-c)^{2}} + \frac{1}{(c-a)^{2}} is always the square of a rational number.

Solution 2:

Let x=\frac{1}{a-b}, y=\frac{1}{b-c}, z=\frac{1}{c-a}. It can be very easily shown that \frac{1}{x}+ \frac{1}{y} + \frac{1}{z} =0, or xy+yz+zx=0. So, the given expression x^{2}+y^{2}+z^{2}=(x+y+z)^{2} is a perfect square !!!ย BINGO! ๐Ÿ™‚ ๐Ÿ™‚ ๐Ÿ™‚

Nalin Pithwa.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s