Huygens’ problem to Leibnitz: solution

In the Feb 23 2018 blog problem, we posed the following question:

Sum the following infinite series:

1+\frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \frac{1}{15}+ \ldots.


The sum can be written as:

S=\sum_{n=1}^{\infty}P_{n}, where P_{n}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1}).

Thus, 2(1-\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \ldots)=2. This is the answer.

If you think deeper, this needs some discussion about rearrangements of infinite series also. For the time, we consider it outside our scope.


Nalin Pithwa.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s