# Inequalities and mathematical induction: RMO sample problems-solutions

Problem:

1. Prove the inequality —- $2^{n}(n!)^{2} \leq (2n)!$ for all natural numbers greater than or equal to 1.

Proof 1:

First consider the following: $2.6. 10.14 \ldots (4n-2)=\frac{(2n)!}{n!}$. Let us prove this claim first and then use it to prove what is asked: Towards, that end, consider

$RHS = \frac{(2n)(2n-1)(2n-2)(2n-3)(2n-4)\ldots 4.2.1}{1.2.3.4\ldots (n-1)n}=LHS$, cancelling off the common factors in numerator and denominator of RHS. (note this can also be proved by mathematical induction! 🙂 )

In the given inequality:

we need to prove $2^{n}(n!)^{2} \leq (2n)!$

consider $2.6.10.14. \ldots (4n-2)=\frac{(2n)!}{n!}$ where

LHS = $(2.1)(2.3) (2.5) (2.7) \ldots 2(n-1)$, this is an AP with first term 2 and nth term $(4n-2)$ and common difference 4; there are n factors “2”; hence, we $2^{n}1.3.5.7 \ldots (n-1)=\frac{(2n)!}{n!}$ so we get

$2^{n} (n!) 1.3.5.7.\ldots (n-1) = (2n)!$; multiplying and dividing RHS of this by $2.4.6.8.\ldots n$, we get the desired inequality. Remember the inequality is less than or equal to.

Problem 2:

Establish the Bernoulli inequality: If $(1+a) > 0$, then $(1+a)^{n} \geq 1+na$.

Solution 2:

Apply the binomial theorem, which in turn, is proved by mathematical induction ! 🙂

Problem 3:

For all natural numbers greater than or equal to 1, prove the following by mathematical induction:

$\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \ldots + \frac{1}{n^{2}} \leq 2-\frac{1}{n}$

Proof 3:

Let the given proposition be P(n).

Step 1: Check if P(1) is true. Towards that end:

$LHS=\frac{1}{1^{2}}=1$ and $latex RHS=2-\frac{1}{1}=2-1=1$ and hence, P(1) is true.

Step 2: Let P(n) be true for some $n=k$, $k \in N$. That is, the following is true:

$\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \ldots + \frac{1}{k^{2}} \leq 2 -\frac{1}{k}$

Add $\frac{1}{(k+1)^{2}}$ to both sides of above inequality, we get the following:

$\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \ldots + \frac{1}{k^{2}} + \frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k}+\frac{1}{(k+1)^{2}}$

Now, the RHS in above is $2-\frac{1}{k} +\frac{1}{(k+1)^{2}}=2-\frac{k^{2}+k+1}{k(k+1)^{2}}$. We want this to be less than or equal to $2-\frac{1}{k+1}$. Now, $k \in N$, $k>1$, so what we have to prove is the following:

$-\frac{k^{2}+k+1}{k(k+1)^{2}} \leq -\frac{1}{k+1}$, that is, we want to prove that

$(k+1)(k^{2}+k+1) \geq k(k^{2}+2k+1)$, that is, we want $k^{3}+k^{2}+k+k^{2}+k+1 \geq k^{3}+2k^{2}+k$, that is, we want $k+1 \geq 0$, which is obviously true. QED.

Cheers,

Nalin Pithwa.

This site uses Akismet to reduce spam. Learn how your comment data is processed.