RMO Training: taking help from Nordic mathematical contest: 1988

Problem:

Let m_{n} be a smallest value of the function f_{n}(x)=\sum_{k=0}^{2n}x^{k}. Prove that m_{n} \rightarrow \frac{1}{2} when n \rightarrow \infty.

Proof:

For n>1,

f_{n}(x)=1+x+x^{2}+\ldots=1+x(1+x+x^{2}+x^{4}+\ldots)+x^{2}(1+x^{2}+x^{4}+\ldots)=1+x(1+x)\sum_{k=0}^{n-1}x^{2k}.

From this, we see that f_{n}(x)\geq 1 for x \leq -1 and x\geq 0. Consequently, f_{n} attains its maximum value in the interval (-1,0). On this interval

f_{n}(x)=\frac{1-x^{2n+1}}{1-x}>\frac{1}{1-x}>\frac{1}{2}

So, m_{n} \geq \frac{1}{2}. But,

m_{n} \leq f_{n}(-1+\frac{1}{\sqrt{n}})=\frac{1}{2-\frac{1}{\sqrt{n}}}+\frac{(1-\frac{1}{\sqrt{n}})^{2n+1}}{2-\frac{1}{\sqrt{n}}}

As n \rightarrow \infty, the first term on the right hand side tends to the limit \frac{1}{2}. In the second term, the factor

(1-\frac{1}{\sqrt{n}})^{2n}=((1-\frac{1}{\sqrt{n}})^{\sqrt{n}})^{2\sqrt{n}}

of the numerator tends to zero because

\lim_{k \rightarrow \infty}(1-\frac{1}{k})^{k}=e^{-1}<1.

So, \lim_{n \rightarrow \infty}m_{n}=\frac{1}{2}

auf wiedersehen,

Nalin Pithwa.

Reference: Nordic Mathematical Contest, 1987-2009.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s