An easy inequality from Nordic mathematical contests !?

Reference: Nordic Mathematical Contest, 1987-2009, R. Todev.


Let a, b, and c be real numbers different from 0  and a \geq b \geq c. Prove that inequality

\frac{a^{3}-c^{3}}{3} \geq abc(\frac{a-b}{c} + \frac{b-c}{a})

holds. When does the equality hold?


We know that a, b and c are real, distinct and also non-zero and also that a \geq b \geq c.

Hence, c-b \leq 0 \leq a-b, we have (a-b)^{3}\geq (c-b)^{3}, or

a^{3}-3a^{a}b+3ab^{2}-b^{3} \geq c^{3}-3bc^{2}+3b^{2}c-b^{3}

On simplifying this, we immediately have

\frac{1}{3}{(a^{3}-c^{3})} \geq a^{2}b-ab^{2}+b^{2}c-bc^{2}=abc(\frac{a-b}{c}+\frac{b-c}{a}).

A sufficient condition for equality is a=c. If a>c, then (a-b)^{3}>(c-b)^{3}. which makes the proved inequality a strict one. So, a=c is a necessary condition for equality too.

-Nalin Pithwa.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s