# There are many “inequalities” ! :-( :-) !

Reference: R. Todev, Nordic Mathematical Contests, 1987-2009.

Question:

Let a, b, and c be positive real numbers. Prove that $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \leq \frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}}$.

Solution:

The arithmetic-geometric inequality yields $3=3\sqrt{\frac{a^{2}}{b^{2}}.\frac{b^{2}}{c^{2}}.\frac{c^{2}}{a^{2}}}\leq \frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}$,

or $\sqrt{3} \leq \sqrt{\frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}}}$…call this relation I.

On the other hand, the Cauchy-Schwarz inequality implies $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \leq \sqrt{1^{2}+1^{2}+1^{2}}\sqrt{\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}}=\sqrt{3}\sqrt{\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}}$….call this relation II.

We arrive at the inequality we desire by combining relations I and II. Hence, the proof. QED.

Cheers,

Nalin Pithwa.

This site uses Akismet to reduce spam. Learn how your comment data is processed.