# Algebra question: RMO/INMO problem-solving practice

Question:

If $\alpha$, $\beta$, $\gamma$ be the roots of the cubic equation $ax^{3}+3bx^{2}+3cx+d=0$. Prove that the equation in y whose roots are $\frac{\beta\gamma-\alpha^{2}}{\beta+\gamma-2\alpha} + \frac{\gamma\alpha-\beta^{2}}{\gamma+\\alpha-2\beta} + \frac{\alpha\beta-\gamma^{2}}{\alpha+\beta-2\gamma}$ is obtained by the transformation $axy+b(x+y)+c=0$. Hence, form the equation with above roots.

Solution:

Given that $\alpha$, $\beta$, $\gamma$ are the roots of the equation: $ax^{3}+3bx^{2}+3cx+d=0$…call this equation I.

By relationships between roots and co-efficients, (Viete’s relations), we get $\alpha+\beta+\gamma=-\frac{3b}{a}$ and $\alpha\beta+\beta\gamma+\gamma\alpha=\frac{3c}{a}$, and $\alpha\beta\gamma=-\frac{d}{a}$

Now, $\gamma=\frac{\beta\gamma-\alpha^{2}}{\beta+\gamma-2\alpha}=\frac{\frac{\alpha\beta\gamma}{\alpha}-\alpha^{2}}{(\alpha+\beta+\gamma)-3\alpha}=\frac{-\frac{d}{a\alpha}-\alpha^{2}}{-\frac{3b}{a}-3\alpha}=\frac{d+a\alpha^{3}}{3\alpha(b+a\alpha)}$, that is, $3xy(b+ax)=d+ax^{3}$, or $ax^{3}-3ayx^{2}-3byx+d=0$…call this equation II.

Subtracting Equation II from Equation I, we get $3(b+ay)x^{2}+3(c+by)x=0$ $(b+ay)x+c+by=0$ since $x \neq 0$ $axy+b(x+y)+c=0$ which is the required transformation.

Now, $(ay+b)x=-(by+c)$, that is, $x=-\frac{by+c}{ay+b}$

Putting this value of x in Equation I, we get $-a(\frac{by+c}{ay+b})^{3}+3b(\frac{by+c}{ay+b})^{2}-3c(\frac{by+c}{ay+b})+d=0$, that is, $a(by+c)^{3}-3b(by+c)^{2}(ay+b)+3c(by+c)(ay+b)^{2}-d(ay+b)^{3}=0$, which is the required equation.

Cheers,

Nalin Pithwa.

This site uses Akismet to reduce spam. Learn how your comment data is processed.