# RMO Geometry : Basics : Bertschneider (Coolidge)/Brahmagupta’s Formula

Heron’s formula for the area of a triangle is well-known. A similar formula for the area of a quadrilateral in terms of the lengths of its sides is given below:

Note that the lengths of the four sides do not specify the quadrilateral uniquely.The area $\Delta=\sqrt{(s-a)(s-b)(s-c)(s-d)-abcd.cos^{2}(\phi/2)}$

where a, b, c, and d are the lengths of the four sides; s is the semi-perimeter and $\phi$ is the sum of the diagonally opposite angles of the quadrilateral. This is known as Bertschneider(Coolidge) formula. For a cyclic quadrilateral, $\phi$ is 180 degrees and the area is maximum for the set of given sides and the area is given by (Brahmagupta’s formula): $\Delta = \sqrt{(s-a)(s-b)(s-c)(s-d)}$.

Prove both the formulae given above!

-Nalin Pithwa.

PS: I will put the solutions on this blog after some day(s). First, you need to try.

This site uses Akismet to reduce spam. Learn how your comment data is processed.