The Pigeon Hole Principle : Practice Problems

Problem 1:

A bag contains beads of two colours: black and white. What is the smallest number of beads which must be drawn from the bag, without looking, so that among these beads, there are two of the same colour?

Problem 2:

One million pine trees grow in a forest. It is known that no pine tree has more than 600000 pine needles on it. Show that two pine trees in the forest must have the same number of pine needles.

Problem 3:

Given twelve integers, show that two of them can be chosen whose difference is divisible by 11.

More later. Kindly send your comments, answers, etc.

Nalin Pithwa

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.