# Real Numbers, Sequences and Series: part 9

Definition.

We call a sequence $(a_{n})_{n=1}^{\infty}$ a Cauchy sequence if for all $\varepsilon >0$ there exists an $n_{0}$ such that $|a_{m}-a_{n}|<\varepsilon$ for all m, $n > n_{0}$.

Theorem:

Every Cauchy sequence is a bounded sequence and is convergent.

Proof.

By definition, for all $\varepsilon >0$ there is an $n_{0}$ such that

$|a_{m}-a_{n}|<\varepsilon$ for all m, $n>n_{0}$.

So, in particular, $|a_{n_{0}}-a_{n}|<\varepsilon$ for all $n > n_{0}$, that is,

$a_{n_{0}+1}-\varepsilon for all $n>n_{0}$.

Let $M=\max \{ a_{1}, \ldots, a_{n_{0}}, a_{n_{0}+1}+\varepsilon\}$ and $m=\min \{ a_{1}, \ldots, a_{n_{0}+1}-\varepsilon\}$.

It is clear that $m \leq a_{n} \leq M$, for all $n \geq 1$.

We now prove that such a sequence is convergent. Let $\overline {\lim} a_{n}=L$ and $\underline{\lim}a_{n}=l$. Since any Cauchy sequence is bounded,

$-\infty < l \leq L < \infty$.

But since $(a_{n})_{n=1}^{\infty}$ is Cauchy, for every $\varepsilon >0$ there is an $n_{0}=n_{0}(\varepsilon)$ such that

$a_{n_{0}+1}-\varepsilon for all $n>n_{0}$.

which implies that $a_{n_{0}+1}-\varepsilon \leq \underline{\lim}a_{n} =l \leq \overline{\lim}a_{n}=L \leq a_{n_{0}+1}+\varepsilon$. Thus, $L-l \leq 2\varepsilon$ for all $\varepsilon>0$. This is possible only if $L=l$.

QED.

Thus, we have established that the Cauchy criterion is both a necessary and sufficient criterion of convergence of a sequence. We state a few more results without proofs (exercises).

Theorem:

For sequences $(a_{n})_{n=1}^{\infty}$ and $(b_{n})_{n=1}^{\infty}$.

(i) If $l \leq a_{n} \leq b_{n}$ and $\lim_{n \rightarrow \infty}b_{n}=l$, then $(a_{n})_{n=1}^{\infty}$ too is convergent and $\lim_{n \rightarrow \infty}a_{n}=l$.

(ii) If $a_{n} \leq b_{n}$, then $\overline{\lim}a_{n} \leq \overline{\lim}b_{n}$, $\underline{\lim}a_{n} \leq \underline{\lim}b_{n}$.

(iii) $\underline{\lim}(a_{n}+b_{n}) \geq \underline{\lim}a_{n}+\underline{\lim}b_{n}$

(iv) $\overline{\lim}(a_{n}+b_{n}) \leq \overline{\lim}{a_{n}}+ \overline{\lim}{b_{n}}$

(v) If $(a_{n})_{n=1}^{\infty}$ and $(b_{n})_{n=1}^{\infty}$ are both convergent, then $(a_{n}+b_{n})_{n=1}^{\infty}$, $(a_{n}-b_{n})_{n=1}^{\infty}$, and $(a_{n}b_{n})_{n=1}^{\infty}$ are convergent and we have $\lim(a_{n} \pm b_{n})=\lim{(a_{n} \pm b_{n})}=\lim{a_{n}} \pm \lim{b_{n}}$, and $\lim{a_{n}b_{n}}=\lim {a_{n}}\leq \lim {b_{n}}$.

(vi) If $(a_{n})_{n=1}^{\infty}$, $(b_{n})_{n=1}^{\infty}$ are convergent and $\lim_{n \rightarrow \infty}b_{n}=l \neq 0$, then $(\frac{a_{n}}{b_{n}})_{n=1}^{\infty}$ is convergent and $\lim_{n \rightarrow \frac{a_{n}}{b_{n}}}= \frac{\lim {a_{n}}}{\lim{b_{n}}}$.

Reference: Understanding Mathematics by Sinha, Karandikar et al. I have used this reference for all the previous articles on series and sequences.

More later,

Nalin Pithwa

This site uses Akismet to reduce spam. Learn how your comment data is processed.