Real numbers, sequences and series: part VI

No study is complete without solving problems on your own. Below are the exercises related to part V.

Exercises.

Using the properties of real numbers, show that

1) \alpha <0 or \alpha=0 or \alpha>0.

2) If \alpha \neq 0, (-\alpha)^{2}=(\alpha)^{2}>0.

3) if 0<a\leq b, then \frac{1}{b} \leq \frac{1}{a}.

4) If 0 \leq a,b, then (1-a)(1-b) \geq 1-a-b.

5) If 0<a<1, then a^{n}<1 for any positive integer n.

6) For 0<a,b, a^{n}<b^{n} implies a<b.

7) If 0 \leq a, then (1+a)^{n}\geq 1+na, and (1-a)^{n} \geq 1-na, and

8) If 0<a<\frac{1}{n}, then (1+a)^{n}<\frac{1}{(1-a)^{n}}<\frac{1}{1-na}

9) Every set A \subseteq \Re that is bounded below admits a greatest lower bound.

More later,

Nalin Pithwa

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s