a cute problem on infinite series

Evaluate the infinite series S = \sum_{n=1}^{\infty} \arctan (2/n^{2})

Solution:

For n \geq 1 we have

\arctan (1/n)-\arctan (1/(n+2))=\arctan \frac{(1/n)-(1/(n+2)}{1+(1/(n(n+2)))}=\arctan (2/(n+1)^{2})

so that for N \geq 2 we have

\sum_{n=2}^{N} \arctan (2/n^{2}) = \sum_{n=1}^{N-1}\arctan(2/(n+1)^{2}) which equals the following

\sum_{n=1}^{N-1} (\arctan (1/n) - \arctan(1/(n+2)) = \arctan (1) + \arctan (1/2) - \arctan (1/N) - \arctan (1/(N+1))

Letting N \rightarrow \infty we get

\sum_{n=2}^{\infty} \arctan (2/n^{2}) = \arctan (1) + \arctan (1/2) = (\pi/4) + \arctan (1/2) and so

S= (\pi/4) + \arctan (2) + \arctan (1/2) = ((3\pi)/4)

More later…

Nalin Pithwa

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s